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The setting

We shall work on Polish spaces, i.e. topological spaces which are
metrizable by a complete and separable distance.

Given such space X, by #2(X) we mean the space of Borel probability
measures on X.

It is perfectly fine to consider just the case X = RY.



A notion: the push forward
Let X,Y be Polish spaces, € Z(X)and T : X — Y a Borel map.

The measure T.u € Z(Y) is defined by

T.u(A) == u(T71(A)), for every Borel set A C Y

The measure T, is characterized by

/de*,u:/fonp,

for any Borel function f: Y — R.



Monge’s formulation of the transport problem

Let p € Z(X), v € Z(Y) be given, and letc: X x Y — R be a cost
function, say continuous and non-negative.

Problem: Minimize
[ et T6) dutx)

among all transport maps from p to v, i.e., among all maps T such
that T,u=v



Why this is a bad formulation

There are several issues with this formulation:

> it may be that no transport map exists at all (eg., if . is a Delta
and v is not)

» the constraint T, = v is not closed w.r.t. any reasonable weak
topology



Kantorovich’s formulation

A measure v € Z(X x Y) is a transport plan from p to v if

Ty = p,

wf’y = .
Problem Minimize
[ etepanixy),

among all transport plans from x to v.



Why this is a good formulation

» There always exists at least one transport plan: u x v,

» Transport plans ‘include’ transport maps: if T, = v, then
(id, T).u is a transport plan

» The set of transport plans is closed w.r.t. the weak topology of
measures.

» The map v — /c(x, y)dv(x, y) is linear and weakly continuous,
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» Transport plans ‘include’ transport maps: if T, = v, then
(id, T).u is a transport plan

» The set of transport plans is closed w.r.t. the weak topology of
measures.

» The map v — /c(x, y)dv(x, y) is linear and weakly continuous,

In particular, minima exist.



Now what?

What can we say about optimal plans?

In particular:
» Do they have any particular structure? If so, which one?

> Are they unique?

» Are they induced by maps?
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A key example
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A key example

Let {x;};, {yiti, i=1,..., N be points in X and Y respectively
,LL L N - Xj»
V.= N Z i
1

Then a plan ~ is optimal iff for any n € N, permutation o of {1, ...

and any {(Xk, Yx)}k=1,....n C supp(7y) it holds

Z c(Xk, Yk) < Z C( Xk, Yo(k))

k k



The general definition

We say thata setI' € X x Y is c-cyclically monotone if for any n € N,
permutation o of {1,...,n} and any {(Xk, ¥x)}k=1,...n C I' it holds

77777

> e k) <D (X, Yok))

k k



First structural theorem

Theorem A transport plan ~ is optimal if and only if its support supp(~y)
is c-cyclically monotone.



First structural theorem

Theorem A transport plan ~ is optimal if and only if its support supp(~y)
is c-cyclically monotone.

In particular, being optimal depends only on the support of 4, and not
on how the mass is distributed on the support (!).
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The dual formulation

Given the measures p € £(X), v € #(Y) and the cost function
c: XxY — R, maximize

/wdu+/wdu7

among all couples of functions ¢ : X — R, ¥ : Y — R continuous and
bounded such that

o(X)+(y) <clx,y), VxeX yeV.

We call such a couple of functions admissible potentials



A simple inequality

Let v be a transport plan from u to v and (¢, ¥) admissible potentials.
Then

/ o, y) dv(x.y) > / o) + () dy(x,Y)
- / () du(x) + / By) du(y).

Thus
inf{transport problem} > sup{dual problem}



A property of admissible potentials

Say that (¢, 1) are admissible potentials and define
¢o(y) = infe(x,y) — ¢(X).

Then ¢° > 1 and (¢, ¢°) are admissible as well.



A property of admissible potentials

Say that (¢, 1) are admissible potentials and define
¢o(y) = infe(x,y) — ¢(X).

Then ¢° > 1 and (¢, ¢°) are admissible as well.

Similarly, we can define
4E(x) = inf e(x, ) — b(y),

so that ¢ > ¢ and (¢°, 1) are admissible



The process stabilizes

Starting from (¢,%), we can consider the admissible potentials
(0,9, (0%, ¢°), (%, °°)...
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The process stabilizes

Starting from (¢,%), we can consider the admissible potentials
(0,9, (0%, ¢°), (%, °°)...

This process stops, because ¢°° = ¢°. Indeed

p*(y) = infsupinf c(x, y) — ¢(x,¥) + ¢(X. ¥) = ¢(%),
y

and picking X = x we get ¢©°° < ¢, and picking y = y we get
wCCC Z SOC_



c-concavity and c-superdifferential

A function ¢ is c-concave if ¢ = ¢ for some function 1.

The c-superdifferential 9°¢p C X x Y is the set of (x, y) such that

p(X) +¢°(y) = c(x, y)-



Second structural theorem

For any c-concave function ¢, the set 9y is c-cyclically monotone,
indeed if {(xk, yk)}x C 0% it holds

> ek k) =Y e(Xk) + ° (k)
k

k
= 0(xXk) + Vo))
k

<> (XK, Vo)
k



Second structural theorem

For any c-concave function ¢, the set 9y is c-cyclically monotone,
indeed if {(xk, yk)}x C 0% it holds

> ek k) =Y e(Xk) + ° (k)
k

k
= o(%) + Vo))
k

<> (XK, Vo)
k

Actually much more holds:
Theorem A set I' is c-cyclically monotone iff I € 9% for some ¢
c-concave.



To summarize

Given u € Z(X), v € £(Y) and a cost function c, for an admissible
plan ~ the following three are equivalent:

> ~ is optimal
» supp() is c-cyclically monotone

> supp(vy) C 9% for some c-concave function ¢

(this requires some minor technical compatibility conditions between
1, v, ¢ which we neglect here)



No duality gap

It holds
inf{transport problem} = sup{dual problem}

Indeed, if « is optimal, then supp(v) C 9% for some c-concave .
Thus

[ etenyanixn = o0+ aven = [oant [va
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The case X =Y =R%and ¢(x, y) = |x — y|?/2

c-concavity and convexity

¢ is c-concave iff p(x) := |x|2/2 — ¢(x) is convex.
Indeed:

_yl2
@(X) — inf u

R —Y(y)

2 2
o et =inf B4 iy + 5wy
2
& w0 - B =i+ (G- v)

& P(X) =sup(x,y) — <y|2 1/)(y)>



The case X =Y =R%and ¢(x, y) = |x — y|?/2

c-superdifferential and subdifferential

(x,y) € 0% iff y € 0~ 5(x).



The case X =Y =R%and ¢(x, y) = |x — y|?/2

c-superdifferential and subdifferential

(x,y) € 0% iff y € 0~ 5(x).
Indeed:
(x,y) € 0%

p(X) =[x — y2/2 = o°(y),
‘:’{wz)s|z—y|2/2—sf°) vz € RY

( (
(:){ p(x) = |x[2/2 = (x, J/>+IYI /2= ¢°(y),
p(2) = |22/2 < (z,~y) + |y[?/2 = ¥°(y),

& 9(2) — |212/2 < p(x) = x[*/2+ (2 = X, ~y)
& —yedt(p—|-}/2)(x)
&y e o p(x)

vz e R4
vz e RY



Reminder: differentiability of convex functions

Let ¢ : RY — R be convex.

Then for a.e. x, ¢ is differentiable at x. This is the same as to say that
for a.e. x the set 9~ (x) has only one element.



Brenier’'s theorem: statement

Let u, v € 2(RY). Assume that p < £9.

Then:
> there exists a unique transport plan

» this transport plan is induced by a map

» the map is the gradient of a convex function



Brenier’'s theorem: proof

» Pick an optimal plan ~.
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Brenier’'s theorem: proof

» Pick an optimal plan ~.

» Then supp(vy) C 9°p for some c-concave function .

» Then supp(y) C 0~ for some convex function .

» Thus for v-a.e. (x,y) it holds y € 0~ p(x).

» Therefore for u-a.e. x there is only one y such that
(x,y) € supp(), and this y is given by y := Vg(x).

» This is the same as to say that v = (/d, V@), u.

» Now assume that 4 is another optimal plan. Then the plan
(v + 4)/2 would be optimal and not induced by a map.



