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The setting

We shall work on Polish spaces, i.e. topological spaces which are
metrizable by a complete and separable distance.

Given such space X, by P(X) we mean the space of Borel probability
measures on X.

It is perfectly fine to consider just the case X = Rd .



A notion: the push forward

Let X,Y be Polish spaces, µ ∈P(X) and T : X→ Y a Borel map.

The measure T∗µ ∈P(Y) is defined by

T∗µ(A) := µ(T−1(A)), for every Borel set A ⊂ Y

The measure T∗µ is characterized by∫
f dT∗µ =

∫
f ◦ T dµ,

for any Borel function f : Y→ R.



Monge’s formulation of the transport problem

Let µ ∈ P(X), ν ∈ P(Y) be given, and let c : X × Y → R be a cost
function, say continuous and non-negative.

Problem: Minimize ∫
c(x ,T (x)) dµ(x),

among all transport maps from µ to ν, i.e., among all maps T such
that T∗µ = ν



Why this is a bad formulation

There are several issues with this formulation:

I it may be that no transport map exists at all (eg., if µ is a Delta
and ν is not)

I the constraint T∗µ = ν is not closed w.r.t. any reasonable weak
topology



Kantorovich’s formulation

A measure γ ∈P(X× Y) is a transport plan from µ to ν if

π1
∗γ = µ,

π2
∗γ = ν.

Problem Minimize ∫
c(x , y) dγ(x , y),

among all transport plans from µ to ν.



Why this is a good formulation

I There always exists at least one transport plan: µ× ν,

I Transport plans ‘include’ transport maps: if T∗µ = ν, then
(Id ,T )∗µ is a transport plan

I The set of transport plans is closed w.r.t. the weak topology of
measures.

I The map γ 7→
∫

c(x , y) dγ(x , y) is linear and weakly continuous,

In particular, minima exist.
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Now what?

What can we say about optimal plans?

In particular:
I Do they have any particular structure? If so, which one?

I Are they unique?

I Are they induced by maps?
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A key example

Let {xi}i , {yi}i , i = 1, . . . ,N be points in X and Y respectively

µ :=
1
N

∑
i

δxi ,

ν :=
1
N

∑
i

δyi .

Then a plan γ is optimal iff for any n ∈ N, permutation σ of {1, . . . ,n}
and any {(xk , yk )}k=1,...,n ⊂ supp(γ) it holds∑

k

c(xk , yk ) ≤
∑

k

c(xk , yσ(k))
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The general definition

We say that a set Γ ⊂ X× Y is c-cyclically monotone if for any n ∈ N,
permutation σ of {1, . . . ,n} and any {(xk , yk )}k=1,...,n ⊂ Γ it holds∑

k

c(xk , yk ) ≤
∑

k

c(xk , yσ(k))



First structural theorem

Theorem A transport plan γ is optimal if and only if its support supp(γ)
is c-cyclically monotone.

In particular, being optimal depends only on the support of γ, and not
on how the mass is distributed on the support (!).
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The dual formulation

Given the measures µ ∈ P(X), ν ∈ P(Y) and the cost function
c : X× Y→ R, maximize ∫

ϕ dµ+

∫
ψ dν,

among all couples of functions ϕ : X→ R, ψ : Y→ R continuous and
bounded such that

ϕ(x) + ψ(y) ≤ c(x , y), ∀x ∈ X, y ∈ Y.

We call such a couple of functions admissible potentials



A simple inequality

Let γ be a transport plan from µ to ν and (ϕ,ψ) admissible potentials.
Then ∫

c(x , y) dγ(x , y) ≥
∫
ϕ(x) + ψ(y) dγ(x , y)

=

∫
ϕ(x) dµ(x) +

∫
ψ(y) dν(y).

Thus
inf{transport problem} ≥ sup{dual problem}



A property of admissible potentials

Say that (ϕ,ψ) are admissible potentials and define

ϕc(y) := inf
x

c(x , y)− ϕ(x).

Then ϕc ≥ ψ and (ϕ,ϕc) are admissible as well.

Similarly, we can define

ψc(x) := inf
y

c(x , y)− ψ(y),

so that ψc ≥ ϕ and (ψc , ψ) are admissible
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The process stabilizes

Starting from (ϕ,ψ), we can consider the admissible potentials
(ϕ,ϕc), (ϕcc , ϕc), (ϕcc , ϕccc)...

This process stops, because ϕccc = ϕc . Indeed

ϕccc(y) = inf
x

sup
ỹ

inf
x̃

c(x , y)− c(x , ỹ) + c(x̃ , ỹ)− ϕ(x̃),

and picking x̃ = x we get ϕccc ≤ ϕc , and picking ỹ = y we get
ϕccc ≥ ϕc .
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c-concavity and c-superdifferential

A function ϕ is c-concave if ϕ = ψc for some function ψ.

The c-superdifferential ∂cϕ ⊂ X× Y is the set of (x , y) such that

ϕ(x) + ϕc(y) = c(x , y).



Second structural theorem

For any c-concave function ϕ, the set ∂cϕ is c-cyclically monotone,
indeed if {(xk , yk )}k ⊂ ∂cϕ it holds∑

k

c(xk , yk ) =
∑

k

ϕ(xk ) + ϕc(yk )

=
∑

k

ϕ(xk ) + ϕc(yσ(k))

≤
∑

k

c(xk , yσ(k))

Actually much more holds:
Theorem A set Γ is c-cyclically monotone iff Γ ⊂ ∂cϕ for some ϕ
c-concave.
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To summarize

Given µ ∈ P(X), ν ∈ P(Y) and a cost function c, for an admissible
plan γ the following three are equivalent:

I γ is optimal

I supp(γ) is c-cyclically monotone

I supp(γ) ⊂ ∂cϕ for some c-concave function ϕ

(this requires some minor technical compatibility conditions between
µ, ν, c which we neglect here)



No duality gap

It holds
inf{transport problem} = sup{dual problem}

Indeed, if γ is optimal, then supp(γ) ⊂ ∂cϕ for some c-concave ϕ.
Thus∫

c(x , y) dγ(x , y) =

∫
ϕ(x) + ϕc(y) dγ(x , y) =

∫
ϕ dµ+

∫
ψ dν
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The case X = Y = Rd and c(x , y) = |x − y |2/2
c-concavity and convexity

ϕ is c-concave iff ϕ(x) := |x |2/2− ϕ(x) is convex.
Indeed:

ϕ(x) = inf
y

|x − y |2

2
− ψ(y)

⇔ ϕ(x) = inf
y

|x |2

2
+ 〈x ,−y〉+

|y |2

2
− ψ(y)

⇔ ϕ(x)− |x |
2

2
= inf

y
〈x ,−y〉+

(
|y |2

2
− ψ(y)

)
⇔ ϕ(x) = sup

y
〈x , y〉 −

(
|y |2

2
− ψ(y)

)
,



The case X = Y = Rd and c(x , y) = |x − y |2/2
c-superdifferential and subdifferential

(x , y) ∈ ∂cϕ iff y ∈ ∂−ϕ(x).

Indeed:

(x , y) ∈ ∂cϕ

⇔
{
ϕ(x) = |x − y |2/2− ϕc(y),
ϕ(z) ≤ |z − y |2/2− ϕc(y), ∀z ∈ Rd

⇔
{
ϕ(x)− |x |2/2 = 〈x ,−y〉+ |y |2/2− ϕc(y),
ϕ(z)− |z|2/2 ≤ 〈z,−y〉+ |y |2/2− ϕc(y), ∀z ∈ Rd

⇔ ϕ(z)− |z|2/2 ≤ ϕ(x)− |x |2/2 + 〈z − x ,−y〉 ∀z ∈ Rd

⇔ −y ∈ ∂+(ϕ− | · |2/2)(x)

⇔ y ∈ ∂−ϕ(x)
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Reminder: differentiability of convex functions

Let ϕ : Rd → R be convex.

Then for a.e. x , ϕ is differentiable at x . This is the same as to say that
for a.e. x the set ∂−ϕ(x) has only one element.



Brenier’s theorem: statement

Let µ, ν ∈P(Rd ). Assume that µ� Ld .

Then:
I there exists a unique transport plan

I this transport plan is induced by a map

I the map is the gradient of a convex function



Brenier’s theorem: proof

I Pick an optimal plan γ.

I Then supp(γ) ⊂ ∂cϕ for some c-concave function ϕ.
I Then supp(γ) ⊂ ∂−ϕ for some convex function ϕ.
I Thus for γ-a.e. (x , y) it holds y ∈ ∂−ϕ(x).
I Therefore for µ-a.e. x there is only one y such that

(x , y) ∈ supp(γ), and this y is given by y := ∇ϕ(x).
I This is the same as to say that γ = (Id ,∇ϕ)∗µ.
I Now assume that γ̃ is another optimal plan. Then the plan

(γ + γ̃)/2 would be optimal and not induced by a map.
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